A Ball is swung in a vertical circle of radius 3m. If the 2kg ball creates a tension of 5N at point "D", what is the KE at point "D"?

What will be the tension at point "E"?

A car rounds a 40m radius turn. If this car travels at 7.8m/s, what must be μ_{min} so the car does not slide?

A 1.5m rope pulls on a wrench, what will be the wrench's torque if the pull is 50N?

A Ball swings in a cone shaped path. If the string is 20° from equilibrium, what is τ_c?

A mass oscillates back and forth as shown above. If $K = 120 \, \text{Nm}$, what is the speed at point B? What is the acceleration at point B?

Two pendulums of mass m are pictured here. What will be the ratio of $F : G$'s period?

Two students stand 1 meter apart in picture A. If they moved to 2m apart, and one student became 5x as massive, what is the new Force between them?
\[\frac{1}{2} K x^2 = \frac{1}{2} m v^2 \]
\[120 \cdot (1)^2 = m v^2 \]
\[V = \sqrt{\frac{1.2}{m}} \cdot 63 \text{ m/s} \]

At point B, \(a = 0 \)

because \(F = -kx = 0 \)

\[T = \frac{V^2}{g} \quad \text{vs} \quad T = \frac{V^2}{g} \]

\[T \quad \text{vs} \quad \frac{V^2}{g} \]

\[1 : \sqrt{2} \]

\[1 : 1.4 \]

\[F = G \frac{m_m}{d^2} \quad F_{or} = G \frac{m_m}{d^2} \]

\[F_{new} = G \frac{5m}{(2d)^2} \]

\[F_{new} = G \frac{m \cdot 5}{d^2 \cdot 4} \]

\[F_{new} = \frac{5}{4} \frac{G m m}{d^2} \]

1.25 or \(\frac{5}{4} \times \text{original} \)

\[F_{rx} = \Sigma F_x = F \]

\[F_{ry} = \Sigma F_y = 0 \]

\[\tan 20 = \frac{a}{g} = \frac{F_{rx}}{F_{ry}} \]

\[a_c = 3.6 \text{ m/s}^2 \]

\[\tan 20 = \frac{a_c}{g} \]

\[\Sigma F = m \cdot g + F_t = F \]

\[m \cdot g + F_t = \frac{m v^2}{F} \]

\[m \cdot g + F_t = \frac{2v^2}{kg} \]

\[m \cdot g + 5N = \frac{2v^2}{3} \]

\[\Sigma F = F_r - m \cdot g = F \]

\[F_r = F - m \cdot g \]

\[\Sigma F = \frac{1}{2} m v^2 \]

\[K = \frac{1}{2} \cdot (6.1)^2 \]

\[V = 6.1 \text{ m/s} \]

\[K = 36.85 \]

\[\Sigma F = \frac{1}{2} m v^2 \]

\[m \cdot g \]

\[m \cdot g = \frac{m v^2}{r} \]

\[m = ? \]

\[m \cdot g \cdot r = V^2 \]

\[g = 9.8 \text{ m/s}^2 \]

\[r = 40 \text{ m} \]

\[V = 7.8 \text{ m/s}^2 \]

\[m \cdot g \cdot r = V^2 \]

\[m = 0.16 \]

\[F_f = F_r \]

\[F_r = m \cdot v \cdot \frac{g}{r} \]

\[N \cdot F_r = m \cdot g \]

\[m \cdot g \cdot r = V^2 \]

\[T = 50 \cdot 5 \sin 90 \]

\[T = 25 \text{Nm} \]

\[\Sigma \tau = \Sigma F \cdot d \sin \theta \]

\[\tau = 50 \cdot 5 \sin 90 \]

\[\tau = 25 \text{Nm} \]

\[\Sigma \tau = \Sigma F \cdot d \sin \theta \]

\[\tau = (m \cdot g) \cdot 2 + (1 \cdot g) \cdot 1.5 + (1 \cdot g) \cdot 1 + (2 \cdot g) \cdot 2 \]

\[\times \]

\[m = 0.175 \text{ kg} \]