A gas may be treated as an Ideal Gas when it is far away from vaporization (liquid→gas) or from sublimation (solid→gas). Specifically, this means at:
- low density
- low pressure
- high temperature

Ideal Gas Law

\[PV = nRT \]

- \(P \) = absolute pressure (not gauge)
- \(V \) = volume
- \(T \) = absolute temperature (Kelvin)
- \(n \) = \# moles

\[
\eta = \frac{\# \text{ molecules}}{\text{Avagadro's}} = \frac{N}{N_A} = \frac{N}{6.02 \times 10^{23}}
\]

\[
\eta = \frac{\text{mass of substance}}{\text{molar mass}}
\]

\[
R = \text{Ideal Gas Constant} = 8.31 J \text{ mol}^{-1} \text{ K}^{-1}
\]

or

\[
R = 0.0821 \text{ L atm} \text{ mol}^{-1} \text{ K}^{-1}
\]

Alternative Form: \(PV = Nk_B T \)

\[
P = \frac{n}{N_A} RT
\]

\[
N = \left(\frac{RT}{k_B} \right)
\]

\[
k_B = \text{Boltzmann's Constant}
\]
How we came up with ideal gas law...

Boyle's Law: \(V \propto \frac{1}{P} \) at a constant temp

\[
\begin{align*}
V \propto \frac{1}{P} & \quad \text{or} \quad V \propto \frac{1}{\frac{1}{P}} \\
\Rightarrow P \cdot V &= \text{constant}
\end{align*}
\]

Charles's Law: \(V \propto T \) at constant pressure

\[
\begin{align*}
V \propto T \\
v = (\text{constant}) \cdot T
\end{align*}
\]

Note that with Charles's Law we can trace the straight line down to a temperature where volume = 0. Since volume can't possibly be negative, this temperature must be the minimum possible. This is how we can experimentally determine \textbf{Absolute zero}.

\[
\begin{align*}
\text{Absolute zero} &= -273.15 \degree C \\
T &= T(\text{celsius})
\end{align*}
\]

Gay-Lussac's Law: \(P \propto T \) at a constant volume

\[
\begin{align*}
P \propto T \\
P = (\text{constant}) \cdot T
\end{align*}
\]
Putting all three laws together

\[v \cdot P = \text{constant}, \]
\[v = \text{constant}_1 \cdot T \]
\[P = \text{constant}_3 \cdot T \]

\[\{ \text{These constants} \]
\[\text{are all different} \]

We get \[PV = \text{constant}_1 \cdot T \]

This constant is \(\eta R \)

\[\text{STP (Standard Temperature and Pressure)} \]

\[T = 273.15 \text{K (0}^\circ\text{C)} \]
\[P = 1.00 \text{ atm} = 1.013 \times 10^5 \frac{\text{N}}{\text{m}^2} = 1.013 \text{ kPa} \]