Angular Velocity \(\omega \) \(\rightarrow \) \(\text{[radians/second]} \) or \(\text{[degrees/second]} \) or \(\text{[RPM]} \)

\[
\omega = \frac{\text{angle}}{\text{time}}
\]

Linear Velocity for an object traveling in a circle

\[
v = \frac{\text{distance}}{\text{time}} = \frac{\text{circumference}}{\text{time}} = \frac{2\pi r}{T}
\]

where \(r \) is radius
\(T \) is “period” - the amount of time to complete one cycle

Frequency vs Period

\[
T = \text{period} = \text{amount of time for one cycle} \ [s]
\]

\[
f = \text{frequency} = \text{number of cycles in a unit of time} \ [\frac{1}{s}] \text{ or } [\text{Hertz}] = [\text{Hz}]
\]

\[
T = \frac{1}{f}
\]

Centripetal Acceleration

In order to travel in a circle, an object must accelerate inward. This should be evident from our definition of velocity, which is speed and direction. Changing direction = changing \(v = \text{acceleration} \).
For an object to turn right, it must accelerate to the right:

![Diagram showing object turning right with acceleration vector]

But what happens if the car continues to accelerate to the right?

![Diagram showing object circling with various accelerations and directions]

- Going right, accelerating down
- Going down, accelerating left
- Going left, accelerating up
- Going up, accelerating right

Notice that:
- The car is driving in a circle, and...
- The acceleration is always toward the center!

This acceleration is called "center-seeking," or centripetal acceleration, \(\vec{a}_c \).
In order for anything to go in a circle, there must be centripetal acceleration happening. The equation for a_c is

$$a_c = \frac{v^2}{r} \quad (** \text{linear velocity})$$

If we substitute $\frac{2\pi r}{T}$ for v, we get a derivation of $a_c = \frac{v^2}{r}$

$$a_c = \left(\frac{2\pi r}{T}\right)^2$$

$$a_c = \frac{4\pi^2 r}{T^2}$$

If we substitute $2\pi rf$ for v, we get

$$a_c = \left(\frac{2\pi rf}{T}\right)^2$$

$$a_c = 4\pi^2 rf^2$$

\therefore For a given period of rotation, if we increase r, we increase acceleration.

Likewise, if we maintain radius constant, but increase the frequency, acceleration goes up.
Centripetal Force

According to Newton's 2nd Law, if there is a centripetal acceleration happening, there must be a net force happening in the centripetal direction:

\[\Sigma F_{\text{centripetal}} = ma_c \]

\[F_c = \frac{mv^2}{r} = \frac{m4\pi^2r}{T^2} = m4\pi^2rf^2 \]

Example Consider a cone with a frictionless surface on the inside. A block is placed inside the cone and the whole apparatus is set rotating so that the block doesn't slide up or down.

There are two forces on the block: gravity and normal. Since the block isn't accelerating up or down, we know that

\[\Sigma F_y = ma \]

\[\Sigma F_y = 0 \]

\[F_{Ny} - mg = 0 \]

\[mg = F_{Ny} \]
Looking at the FBD above, we realize that with just the two forces, the forces $F_{Ny}=mg$ are balanced vertically, but not horizontally! This means there must be some horizontal acceleration due to F_{Nx}!

Is the block really accelerating horizontally? YES!

This horizontal acceleration is what is causing the block to move in a circle. Thus, the force providing the a_x is the x-component of the normal force, F_{Nx}: $F_{Nx}=ma_x=\frac{mv^2}{r}$