Free Fall

A great example of constant acceleration is GRAVITY! an object that is in free fall will accelerate at \(-9.8 \text{ m/s}^2\). notice that there is a negative sign this means that gravity's acceleration will act DOWN. Memorize this value.

Example:
a ball is dropped from a building. how far will it travel in 3 seconds?

Given
\[V_t = 0 \]
\[t = 3 \text{ s} \]
\[a = -9.8 \text{ m/s}^2 \]

Looking For
\[\Delta y \]

\[\Delta y = v_t t + \frac{1}{2} a t^2 \]
\[\Delta y = 0 \cdot t + \frac{1}{2} (-9.8) (3)^2 \]
\[\Delta y = -44.1 \text{ m} \]

we receive a negative displacement because that is what happened. it went down!
Let's document a ball thrown up...

\[t = 3 \text{ s} \]
\[v = 0 \text{ m/s} \]
\[\Delta x = 45 \text{ m} \]
\[a = -10 \text{ m/s}^2 \]

\[t = 2 \text{ s} \]
\[v = 10 \text{ m/s} \]
\[\Delta x = 40 \text{ m} \]
\[a = -10 \text{ m/s}^2 \]

\[t = 1 \text{ s} \]
\[v = 20 \text{ m/s} \uparrow \]
\[\Delta x = 25 \text{ m} \]
\[a = -10 \text{ m/s}^2 \]

\[t = 0.5 \text{ s} \]
\[v_i = 30 \text{ m/s} \uparrow \]
\[\Delta x = 0 \text{ m} \]
\[a = -10 \text{ m/s}^2 \]

\[t = 6 \text{ s} \]
\[v = -30 \text{ m/s} \]
\[\Delta x = 0 \text{ m} \]
\[a = -10 \text{ m/s}^2 \]

Rule of thumb:
if you have a calculator, use \(-9.8 \text{ m/s}^2\)
otherwise use \(-10 \text{ m/s}^2\)